
UML and Patterns.book Page 52 Thursday, September 16, 2004 9:48 PM

53

Chapter

5
 5 EVOLUTIONARY REQUIREMENTS

Ours is a world where people don't know what they
want and are willing to go through hell to get it.

—Don Marquis

Introduction

other UP practices
p. 33

This chapter briefly introduces iterative and evolutionary requirements, and
describes specific UP requirement artifacts, to provide context for the coming
requirements-oriented chapters.

In also explores some evidence illustrating the futility and unskillfulness of
waterfall-oriented requirements analysis approaches, in which there is an
attempt to define so-called “complete” specifications before starting develop-
ment.

Objectives
! Motivate doing evolutionary requirements.

! Define the FURPS+ model.

! Define the UP requirements artifacts.

What’s Next?

Having introduced inception, this chapter introduces requirements and their

evolutionary refinement. The next covers use cases, the prime requirements

practice in the UP and many modern methods.

Other

Requirements
Use Cases

Evolutionary

Requirements
Inception

Case

Studies

UML and Patterns.book Page 53 Thursday, September 16, 2004 9:48 PM

5 – EVOLUTIONARY REQUIREMENTS

54

5.1 Definition: Requirements

Requirements are capabilities and conditions to which the system—and more
broadly, the project—must conform [JBR99].

The UP promotes a set of best practices, one of which is manage requirements.
This does not mean the waterfall attitude of attempting to fully define and sta-
bilize the requirements in the first phase of a project before programming, but
rather—in the context of inevitably changing and unclear stakeholder’s wishes,
this means—“a systematic approach to finding, documenting, organizing, and
tracking the changing requirements of a system” [RUP].

In short, doing it iteratively and skillfully, and not being sloppy.

A prime challenge of requirements analysis is to find, communicate, and
remember (that usually means write down) what is really needed, in a form that
clearly speaks to the client and development team members.

5.2 Evolutionary vs. Waterfall Requirements

Notice the word changing in the definition of what it means to manage require-
ments. The UP embraces change in requirements as a fundamental driver on
projects. That’s incredibly important and at the heart of waterfall versus itera-
tive and evolutionary thinking.

In the UP and other evolutionary methods (Scrum, XP, FDD, and so on), we
start production-quality programming and testing long before most of the
requirements have been analyzed or specified—perhaps when only 10% or 20%
of the most architecturally significant, risky, and high-business-value require-
ments have been specified.

What are the process details? How to do partial, evolutionary requirements
analysis combined with early design and programming, in iterations? See “How
to do Iterative and Evolutionary Analysis and Design?” on page 25. It provides a
brief description and a picture to help explain the process. See “Process: How to
Work With Use Cases in Iterative Methods?” on page 95. It has more detailed
discussion.

Caution!

If you find yourself on a so-called UP or iterative project that attempts to
specify most or all of the requirements (use cases, and so forth) before start-
ing to program and test, there is a profound misunderstanding—it is not a
healthy UP or iterative project.

UML and Patterns.book Page 54 Thursday, September 16, 2004 9:48 PM

55

EVOLUTIONARY VS. WATERFALL REQUIREMENTS

In the 1960s and 1970s (when I started work as a developer) there was still a
common speculative belief in the efficacy of full, early requirements analysis for
software projects (i.e., the waterfall). Starting in the 1980s, there arose evidence
this was unskillful and led to many failures; the old belief was rooted in the
wrong paradigm of viewing a software project as similar to predictable mass
manufacturing, with low change rates. But software is in the domain of new
product development, with high change ranges and high degrees of novelty and
discovery.

change research
p. 24

Recall the key statistic that, on average, 25% of the requirements change on
software projects. Any method that therefore attempts to freeze or fully define
requirements at the start is fundamentally flawed, based on a false assumption,
and fighting or denying the inevitable change.

Underlining this point, for example, was a study of failure factors on 1,027 soft-
ware projects [Thomas01]. The findings? Attempting waterfall practices (includ-
ing detailed up-front requirements) was the single largest contributing factor
for failure, being cited in 82% of the projects as the number one problem. To
quote the conclusion:

… the approach of full requirements definition followed by a long
gap before those requirements are delivered is no longer appro-
priate.

The high ranking of changing business requirements suggests
that any assumption that there will be little significant change to
requirements once they have been documented is fundamentally
flawed, and that spending significant time and effort defining
them to the maximum level is inappropriate.

Another relevant research result answers this question: When waterfall
requirements analysis is attempted, how many of the prematurely early speci-
fied features are actually useful in the final software product? In a study
[Johnson02] of thousands of projects, the results are quite revealing—45% of
such features were never used, and an additional 19% were “rarely” used. See
Figure 5.1. Almost 65% of the waterfall-specified features were of little or no
value!

These results don’t imply that the solution is to start pounding away at the code
near Day One of the project, and forget about requirements analysis or record-
ing requirements. There is a middle way: iterative and evolutionary require-
ments analysis combined with early timeboxed iterative development and
frequent stakeholder participation, evaluation, and feedback on partial results.

UML and Patterns.book Page 55 Thursday, September 16, 2004 9:48 PM

5 – EVOLUTIONARY REQUIREMENTS

56

Figure 5.1 Actual use of waterfall-specified features.

5.3 What are Skillful Means to Find Requirements?

To review the UP best practice manage requirements:

…a systematic approach to finding, documenting, organizing,
and tracking the changing requirements of a system. [RUP]

Besides changing, the word finding is important; that is, the UP encourages
skillful elicitation via techniques such as writing use cases with customers,
requirements workshops that include both developers and customers, focus
groups with proxy customers, and a demo of the results of each iteration to the
customers, to solicit feedback.

The UP welcomes any requirements elicitation method that can add value and
that increases user participation. Even the simple XP “story card” practice is
acceptable on a UP project, if it can be made to work effectively (it requires the
presence of a full-time customer-expert in the project room—an excellent prac-
tice but often difficult to achieve).

5.4 What are the Types and Categories of Requirements?

In the UP, requirements are categorized according to the FURPS+ model

never, 45%

rarely, 19%

often, 13%

sometimes,
16%

always, 7%

UML and Patterns.book Page 56 Thursday, September 16, 2004 9:48 PM

57

WHAT ARE THE TYPES AND CATEGORIES OF REQUIREMENTS?

[Grady92], a useful mnemonic with the following meaning:1

! Functional—features, capabilities, security.

! Usability—human factors, help, documentation.

! Reliability—frequency of failure, recoverability, predictability.

! Performance—response times, throughput, accuracy, availability, resource
usage.

! Supportability—adaptability, maintainability, internationalization, con-
figurability.

The “+” in FURPS+ indicates ancillary and sub-factors, such as:

! Implementation—resource limitations, languages and tools, hardware, ...

! Interface—constraints imposed by interfacing with external systems.

! Operations—system management in its operational setting.

! Packaging—for example, a physical box.

! Legal—licensing and so forth.

It is helpful to use FURPS+ categories (or some categorization scheme) as a
checklist for requirements coverage, to reduce the risk of not considering some
important facet of the system.

Some of these requirements are collectively called the quality attributes,
quality requirements, or the “-ilities” of a system. These include usability,
reliability, performance, and supportability. In common usage, requirements are
categorized as functional (behavioral) or non-functional (everything else);
some dislike this broad generalization [BCK98], but it is very widely used.

architectural
analysis p. 541

As we shall see when exploring architectural analysis, the quality attributes
have a strong influence on the architecture of a system. For example, a high-per-
formance, high-reliability requirement will influence the choice of software and
hardware components, and their configuration.

1. There are several systems of requirements categorization and quality attributes pub-
lished in books and by standards organizations, such as ISO 9126 (which is similar to
the FURPS+ list), and several from the Software Engineering Institute (SEI); any can
be used on a UP project.

UML and Patterns.book Page 57 Thursday, September 16, 2004 9:48 PM

5 – EVOLUTIONARY REQUIREMENTS

58

5.5 How are Requirements Organized in UP Artifacts?

The UP offers several requirements artifacts. As with all UP artifacts, they are
optional. Key ones include:

! Use-Case Model—A set of typical scenarios of using a system. There are
primarily for functional (behavioral) requirements.

! Supplementary Specification—Basically, everything not in the use
cases. This artifact is primarily for all non-functional requirements, such as
performance or licensing. It is also the place to record functional features
not expressed (or expressible) as use cases; for example, a report generation.

! Glossary—In its simplest form, the Glossary defines noteworthy terms. It
also encompasses the concept of the data dictionary, which records
requirements related to data, such as validation rules, acceptable values,
and so forth. The Glossary can detail any element: an attribute of an object,
a parameter of an operation call, a report layout, and so forth.

! Vision—Summarizes high-level requirements that are elaborated in the
Use-Case Model and Supplementary Specification, and summarizes the
business case for the project. A short executive overview document for
quickly learning the project’s big ideas.

! Business Rules—Business rules (also called Domain Rules) typically
describe requirements or policies that transcend one software project—they
are required in the domain or business, and many applications may need to
conform to them. An excellent example is government tax laws. Domain rule
details may be recorded in the Supplementary Specification, but because
they are usually more enduring and applicable than for one software project,
placing them in a central Business Rules artifact (shared by all analysts of
the company) makes for better reuse of the analysis effort.

What is the Correct Format for these Artifacts?

In the UP, all artifacts are information abstractions; they could be stored on Web
pages (such as in a Wiki Web), wall posters, or any variation imaginable. The
online RUP documentation product contains templates for the artifacts, but
these are an optional aid, and can be ignored.

5.6 Does the Book Contain Examples of These Artifacts?

Yes! This book is primarily an introduction to OOA/D in an iterative process
rather than requirements analysis, but exploring OOA/D without some example
or context of the requirements gives an incomplete picture—it ignores the influ-
ence of requirements on OOA/D. And it’s simply useful to have a larger example
of key UP requirements artifacts. Where to find the examples:

UML and Patterns.book Page 58 Thursday, September 16, 2004 9:48 PM

59

RECOMMENDED RESOURCES

5.7 Recommended Resources

References related to requirements with use cases are covered in a subsequent
chapter. Use-case-oriented requirements texts, such as Writing Effective Use
Cases [Cockburn01] are the recommended starting point in requirements study,
rather than more general (and usually, traditional) requirements texts.

There is a broad effort to discuss requirements—and a wide variety of software
engineering topics—under the umbrella of the Software Engineering Body of
Knowledge (SWEBOK), available at www.swebok.org.

The SEI (www.sei.cmu.edu) has several proposals related to quality require-
ments. The ISO 9126, IEEE Std 830, and IEEE Std 1061 are standards related
to requirements and quality attributes, and available on the Web at various
sites.

A caution regarding general requirements books, even those that claim to cover
use cases, iterative development, or indeed even requirements in the UP:

Most are written with a waterfall bias of significant or “thor-
ough” up-front requirements definition before moving on to
design and implementation. Those books that also mention iter-
ative development may do so superficially, perhaps with “itera-
tive” material recently added to appeal to modern trends. They
may have good requirements elicitation and organization tips,
but don’t represent an accurate view of iterative and evolution-
ary analysis.

Any variant of advice that suggests “try to define most of the requirements, and
then move forward to design and implementation” is inconsistent with iterative
evolutionary development and the UP.

Requirement
Artifact Where? Comment

Use-Case Model Introduction p. 61

Intermediate p. 493

Use cases are common in the UP
and an input to OOA/D, and thus
described in detail in an early
chapter.

Supplementary
Specification, Glos-
sary, Vision, Busi-
ness Rules

Case study examples
p. 101

These are provided for consis-
tency, but can be skipped—not an
OOA/D topic.

UML and Patterns.book Page 59 Thursday, September 16, 2004 9:48 PM

