
3

Chapter

1
 1 OBJECT-ORIENTED ANALYSIS 

AND DESIGN

Le temps est un grand professeur, mais
malheureusement il tue tous ses élèves

(Time is a great teacher, but unfortunately it kills all its pupils.)

—Hector Berlioz

1.1 What Will You Learn? Is it Useful?

What does it mean to have a good object design? This book is a tool to help devel-
opers and students learn core skills in object-oriented analysis and design
(OOA/D). These skills are essential for the creation of well-designed, robust, and
maintainable software using OO technologies and languages such as Java or C#.

Objectives
● Describe the book goals and scope.

● Define object-oriented analysis and design (OOA/D).

● Illustrate a brief OOA/D example.

● Overview UML and visual agile modeling.

OOA/D
Introduction

What’s Next?

Iterative, 
Evolutionary & Agile

This chapter introduces the book goals and OOA/D. The next introduces 
iterative and evolutionary development, which shapes how OOA/D is 
presented in this book. The case studies are evolved across three iterations.

Case
Studies

next chapter

Preface
(educator 
resources)

Foreword



1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

4

The proverb “owning a hammer doesn’t make one an architect” is especially true
with respect to object technology. Knowing an object-oriented language (such as
Java) is a necessary but insufficient first step to create object systems. Knowing
how to “think in objects” is critical!

This is an introduction to OOA/D while applying the Unified Modeling Lan-
guage (UML) and patterns. And, to iterative development, using an agile
approach to the Unified Process as an example iterative process. It is not meant
as an advanced text; it emphasizes mastery of the fundamentals, such as how to
assign responsibilities to objects, frequently used UML notation, and common
design patterns. At the same time, mostly in later chapters, the material
progresses to some intermediate-level topics, such as framework design and
architectural analysis. 

UML vs. Thinking in Objects

The book is not just about UML. The UML is a standard diagramming notation.
Common notation is useful, but there are more important OO things to learn—
especially, how to think in objects. The UML is not OOA/D or a method, it is just
diagramming notation. It’s useless to learn UML and perhaps a UML CASE
tool, but not really know how to create an excellent OO design, or evaluate and
improve an existing one. This is the hard and important skill. Consequently, this
book is an introduction to object design.

Yet, we need a language for OOA/D and “software blueprints,” both as a tool of
thought and as a form of communication. Therefore, this book explores how to
apply the UML in the service of doing OOA/D, and covers frequently used UML.

OOD: Principles and Patterns

How should responsibilities be allocated to classes of objects? How should
objects collaborate? What classes should do what? These are critical questions in
the design of a system, and this book teaches the classic OO design metaphor:
responsibility-driven design. Also, certain tried-and-true solutions to design
problems can be (and have been) expressed as best-practice principles, heuris-
tics, or patterns—named problem-solution formulas that codify exemplary
design principles. This book, by teaching how to apply patterns or principles,
supports quicker learning and skillful use of these fundamental object design
idioms.

Case Studies

This introduction to OOA/D is illustrated in some ongoing case studies that
are followed throughout the book, going deep enough into the analysis and
design so that some of the gory details of what must be considered and solved in
a realistic problem are considered, and solved.

Use Cases

OOD (and all software design) is strongly related to the prerequisite activity of
requirements analysis, which often includes writing use cases. Therefore,
the case study begins with an introduction to these topics, even though they are
not specifically object-oriented.



5

WHAT WILL YOU LEARN? IS IT USEFUL?

Iterative Development, Agile Modeling, and an Agile UP

Given many possible activities from requirements through to implementation,
how should a developer or team proceed? Requirements analysis and OOA/D
needs to be presented and practiced in the context of some development process.
In this case, an agile (light, flexible) approach to the well-known Unified Pro-
cess (UP) is used as the sample iterative development process within which
these topics are introduced. However, the analysis and design topics that are
covered are common to many approaches, and learning them in the context of an
agile UP does not invalidate their applicability to other methods, such as Scrum,
Feature-Driven Development, Lean Development, Crystal Methods, and so on. 

 

Figure 1.1 Topics and skills covered.

In conclusion, this book helps a student or developer:

■ Apply principles and patterns to create better object designs.

■ Iteratively follow a set of common activities in analysis and design, based
on an agile approach to the UP as an example.

■ Create frequently used diagrams in the UML notation.

It illustrates this in the context of long-running case studies that evolve over 
several iterations.

Topics and Skills

UML notation

Requirements 
analysis

Principles and 
guidelines

Patterns

Iterative 
development with 
an agile Unified 

Process

OOA/D



1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

6

Many Other Skills Are Important!

This isn’t the Compleate Booke of Software; it’s primarily an introduction to
OOA/D, UML, and iterative development, while touching on related subjects.
Building software involves myriad other skills and steps; for example, usability
engineering, user interface design, and database design are critical to success. 

1.2 The Most Important Learning Goal?

There are many possible activities and artifacts in introductory OOA/D, and a
wealth of principles and guidelines. Suppose we must choose a single practical
skill from all the topics discussed here—a “desert island” skill. What would it
be?

Why? Because it is one activity that must be performed—either while drawing a
UML diagram or programming—and it strongly influences the robustness,
maintainability, and reusability of software components. 

Of course, there are other important skills in OOA/D, but responsibility assign-
ment is emphasized in this introduction because it tends to be a challenging skill
to master (with many “degrees of freedom” or alternatives), and yet is vitally
important. On a real project, a developer might not have the opportunity to per-
form any other modeling activities—the “rush to code” development process. Yet
even in this situation, assigning responsibilities is inevitable.

Consequently, the design steps in this book emphasize principles of responsibil-
ity assignment. 

1.3 What is Analysis and Design?

Analysis emphasizes an investigation of the problem and requirements, rather
than a solution. For example, if a new online trading system is desired, how will
it be used? What are its functions?

A critical ability in OO development is to 
skillfully assign responsibilities to software objects.

Nine fundamental principles in object design and responsibility assignment
are presented and applied. They are organized in a learning aid called
GRASP of principles with names such as Information Expert and Creator.



7

WHAT IS OBJECT-ORIENTED ANALYSIS AND DESIGN?

“Analysis” is a broad term, best qualified, as in requirements analysis (an inves-
tigation of the requirements) or object-oriented analysis (an investigation of the
domain objects).

Design emphasizes a conceptual solution (in software and hardware) that ful-
fills the requirements, rather than its implementation. For example, a descrip-
tion of a database schema and software objects. Design ideas often exclude low-
level or “obvious” details—obvious to the intended consumers. Ultimately,
designs can be implemented, and the implementation (such as code) expresses
the true and complete realized design.

As with analysis, the term is best qualified, as in object-oriented design or data-
base design.

Useful analysis and design have been summarized in the phrase do the right
thing (analysis), and do the thing right (design).

1.4 What is Object-Oriented Analysis and Design?

During object-oriented analysis there is an emphasis on finding and describ-
ing the objects—or concepts—in the problem domain. For example, in the case of
the flight information system, some of the concepts include Plane, Flight, and
Pilot.

During object-oriented design (or simply, object design) there is an emphasis
on defining software objects and how they collaborate to fulfill the requirements.
For example, a Plane software object may have a tailNumber attribute and a
getFlightHistory method (see Figure 1.2).

Finally, during implementation or object-oriented programming, design objects
are implemented, such as a Plane class in Java. 

Figure 1.2 Object-orientation emphasizes representation of objects.

Plane

tailNumber

public class Plane
{
private String tailNumber;

public List getFlightHistory() {...}
}

domain concept
visualization of 
domain concept

representation in an 
object-oriented 
programming language



1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

8

1.5 A Short Example

Before diving into the details of iterative development,
requirements analysis, UML, and OOA/D, this section pre-
sents a bird’s-eye view of a few key steps and diagrams,
using a simple example—a “dice game” in which software
simulates a player rolling two dice. If the total is seven, they
win; otherwise, they lose. 

Define Use Cases 

Requirements analysis may include stories or scenarios of how people use the
application; these can be written as use cases.

Use cases are not an object-oriented artifact—they are simply written stories.
However, they are a popular tool in requirements analysis. For example, here is
a brief version of the Play a Dice Game use case:

Play a Dice Game: Player requests to roll the dice. System pre-
sents results: If the dice face value totals seven, player wins;
otherwise, player loses.

Define a Domain Model

Object-oriented analysis is concerned with creating a description of the domain
from the perspective of objects. There is an identification of the concepts,
attributes, and associations that are considered noteworthy. 

The result can be expressed in a domain model that shows the noteworthy
domain concepts or objects.

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases



9

A SHORT EXAMPLE

For example, a partial domain model is shown in Figure 1.3. 

Figure 1.3 Partial domain model of the dice game.

This model illustrates the noteworthy concepts Player, Die, and DiceGame, with
their associations and attributes. 

Note that a domain model is not a description of software objects; it is a visual-
ization of the concepts or mental models of a real-world domain. Thus, it has
also been called a conceptual object model.

Assign Object Responsibilities and Draw Interaction Diagrams

Object-oriented design is concerned with defining software objects—their
responsibilities and collaborations. A common notation to illustrate these collab-
orations is the sequence diagram (a kind of UML interaction diagram). It
shows the flow of messages between software objects, and thus the invocation of
methods.

For example, the sequence diagram in Figure 1.4 illustrates an OO software
design, by sending messages to instances of the DiceGame and Die classes. Note
this illustrates a common real-world way the UML is applied: by sketching on a
whiteboard.

Notice that although in the real world a player rolls the dice, in the software
design the DiceGame object “rolls” the dice (that is, sends messages to Die
objects). Software object designs and programs do take some inspiration from
real-world domains, but they are not direct models or simulations of the real
world.

Player

name

DiceGame

Die

faceValue

Rolls

Plays

Includes

2

2

1

1

1

1

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases



1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

10

Figure 1.4 Sequence diagram illustrating messages between software objects.

Define Design Class Diagrams

In addition to a dynamic view of collaborating objects shown in interaction dia-
grams, a static view of the class definitions is usefully shown with a design
class diagram. This illustrates the attributes and methods of the classes.

For example, in the dice game, an inspection of the sequence diagram leads to
the partial design class diagram shown in Figure 1.5. Since a play message is
sent to a DiceGame object, the DiceGame class requires a play method, while
class Die requires a roll and getFaceValue method. 

In contrast to the domain model showing real-world classes, this diagram shows
software classes. 

Figure 1.5 Partial design class diagram.

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases

2

Die

faceValue : int

getFaceValue() : int
roll()

DiceGame

die1 : Die
die2 : Die

play()

1



11

WHAT IS THE UML?

Notice that although this design class diagram is not the same as the domain
model, some class names and content are similar. In this way, OO designs and
languages can support a lower representational gap between the software
components and our mental models of a domain. That improves comprehension.

Summary

The dice game is a simple problem, presented to focus on a few steps and arti-
facts in analysis and design. To keep the introduction simple, not all the illus-
trated UML notation was explained. Future chapters explore analysis and
design and these artifacts in closer detail.

1.6 What is the UML?

To quote: 

The Unified Modeling Language is a visual language for specify-
ing, constructing and documenting the artifacts of systems
[OMG03a].

The word visual in the definition is a key point—the UML is the de facto stan-
dard diagramming notation for drawing or presenting pictures (with some text)
related to software—primarily OO software.

This book doesn’t cover all minute aspects of the UML, a large body of notation.
It focuses on frequently used diagrams, the most commonly used features within
those, and core notation that is unlikely to change in future UML versions.

The UML defines various UML profiles that specialize subsets of the notation
for common subject areas, such as diagramming Enterprise JavaBeans (with the
UML EJB profile). 

At a deeper level—primarily of interest to Model Driven Architecture (MDA)
CASE tool vendors—underlying the UML notation is the UML meta-model
that describes the semantics of the modeling elements. It isn’t something a
developer needs to learn.

Three Ways to Apply UML

In [Fowler03] three ways people apply UML are introduced:

■ UML as sketch—Informal and incomplete diagrams (often hand sketched
on whiteboards) created to explore difficult parts of the problem or solution
space, exploiting the power of visual languages.

■ UML as blueprint—Relatively detailed design diagrams used either for 1)
reverse engineering to visualize and better understanding existing code in
UML diagrams, or for 2) code generation (forward engineering). 



1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

12

❍ If reverse engineering, a UML tool reads the source or binaries
and generates (typically) UML package, class, and sequence dia-
grams. These “blueprints” can help the reader understand the big-
picture elements, structure, and collaborations.

❍ Before programming, some detailed diagrams can provide guid-
ance for code generation (e.g., in Java), either manually or auto-
matically with a tool. It’s common that the diagrams are used for
some code, and other code is filled in by a developer while coding
(perhaps also applying UML sketching).

■ UML as programming language—Complete executable specification of a
software system in UML. Executable code will be automatically generated,
but is not normally seen or modified by developers; one works only in the
UML “programming language.” This use of UML requires a practical way to
diagram all behavior or logic (probably using interaction or state diagrams),
and is still under development in terms of theory, tool robustness and
usability.

agile modeling 
p. 30

Agile modeling emphasizes UML as sketch; this is a common way to apply the
UML, often with a high return on the investment of time (which is typically
short). UML tools can be useful, but I encourage people to also consider an agile
modeling approach to applying UML.

Three Perspectives to Apply UML

The UML describes raw diagram types, such as class diagrams and sequence
diagrams. It does not superimpose a modeling perspective on these. For exam-
ple, the same UML class diagram notation can be used to draw pictures of con-

UML and “Silver Bullet” Thinking

There is a well-known paper from 1986 titled “No Silver Bullet” by Dr. Frederick Brooks, also published in his
classic book Mythical Man-Month (20th anniversary edition). Recommended reading! An essential point is
that it’s a fundamental mistake (so far, endlessly repeated) to believe there is some special tool or technique in
software that will make a dramatic order-of-magnitude difference in productivity, defect reduction, reliability,
or simplicity. And tools don’t compensate for design ignorance.

Yet, you will hear claims—usually from tool vendors—that drawing UML diagrams will make things much
better; or, that Model Driven Architecture (MDA) tools based on UML will be the breakthrough silver bullet. 

Reality-check time. The UML is simply a standard diagramming notation—boxes, lines, etc. Visual modeling
with a common notation can be a great aid, but it is hardly as important as knowing how to design and think
in objects. Such design knowledge is a very different and more important skill, and is not mastered by learn-
ing UML notation or using a CASE or MDA tool. A person not having good OO design and programming skills
who draws UML is just drawing bad designs. I suggest the article Death by UML Fever [Bell04] (endorsed by
the UML creator Grady Booch) for more on this subject, and also What UML Is and Isn’t [Larman04].

Therefore, this book is an introduction to OOA/D and applying the UML to support skillful OO design.



13

WHAT IS THE UML?

cepts in the real world or software classes in Java.

This insight was emphasized in the Syntropy object-oriented method [CD94].
That is, the same notation may be used for three perspectives and types of mod-
els (Figure 1.6):

1. Conceptual perspective—the diagrams are interpreted as describing
things in a situation of the real world or domain of interest. 

2. Specification (software) perspective—the diagrams (using the same
notation as in the conceptual perspective) describe software abstractions or
components with specifications and interfaces, but no commitment to a par-
ticular implementation (for example, not specifically a class in C# or Java).

3. Implementation (software) perspective—the diagrams describe soft-
ware implementations in a particular technology (such as Java). 

Figure 1.6 Different perspectives with UML.

We’ve already seen an example of this in Figure 1.3 and Figure 1.5, where the
same UML class diagram notation is used to visualize a domain model and a
design model.

In practice, the specification perspective (deferring the target technology, such
as Java versus .NET) is seldom used for design; most software-oriented UML
diagramming assumes an implementation perspective.

The Meaning of “Class” in Different Perspectives

In the raw UML, the rectangular boxes shown in Figure 1.6 are called classes,
but this term encompasses a variety of phenomena—physical things, abstract
concepts, software things, events, and so forth.1

A method superimposes alternative terminology on top of the raw UML. For
example, in the UP, when the UML boxes are drawn in the Domain Model, they

Conceptual Perspective
(domain model)

Raw UML class diagram 
notation used to visualize 
real-world concepts.

Specification or 
Implementation 

Perspective
(design class diagram)

Raw UML class diagram 
notation used to visualize 
software elements.

2

Die

faceValue : int

getFaceValue() : int
roll()

DiceGame

die1 : Die
die2 : Die

play()

DiceGame Die

faceValue
Includes 21



1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

14

are called domain concepts or conceptual classes; the Domain Model shows
a conceptual perspective. In the UP, when UML boxes are drawn in the Design
Model, they are called design classes; the Design Model shows a specification
or implementation perspective, as desired by the modeler.

To keep things clear, this book will use class-related terms consistent with the
UML and the UP, as follows:

■ Conceptual class—real-world concept or thing. A conceptual or essential
perspective. The UP Domain Model contains conceptual classes.

■ Software class—a class representing a specification or implementation
perspective of a software component, regardless of the process or method.

■ Implementation class—a class implemented in a specific OO language
such as Java.

UML 1 and UML 2

Towards the end of 2004 a major new release of the UML emerged, UML 2. This
text is based on UML 2; indeed, the notation used here was carefully reviewed
with key members of the UML 2 specification team.

Why Won’t We See Much UML for a Few Chapters?

This is not primarily a UML notation book, but one that explores the larger pic-
ture of applying the UML, patterns, and an iterative process in the context of
OOA/D and related requirements analysis. OOA/D is normally preceded by
requirements analysis. Therefore, the initial chapters introduce the important
topics of use cases and requirements analysis, which are then followed by chap-
ters on OOA/D and more UML details.

1.7 Visual Modeling is a Good Thing

At the risk of stating the blindingly obvious, drawing or reading UML implies
we are working more visually, exploiting our brain’s strength to quickly grasp
symbols, units, and relationships in (predominantly) 2D box-and-line notations. 

This old, simple idea is often lost among all the UML details and tools. It
shouldn’t be! Diagrams help us see or explore more of the big picture and rela-
tionships between analysis or software elements, while allowing us to ignore or
hide uninteresting details. That’s the simple and essential value of the UML—or
any diagramming language.

1. A UML class is a special case of the general UML model element classifier—some-
thing with structural features and/or behavior, including classes, actors, interfaces, 
and use cases.



15

HISTORY

1.8 History

The history of OOA/D has many branches, and this brief synopsis can’t do jus-
tice to all the contributors. The 1960s and 1970s saw the emergence of OO pro-
gramming languages, such as Simula and Smalltalk, with key contributors such
as Kristen Nygaard and especially Alan Kay, the visionary computer scientist
who founded Smalltalk. Kay coined the terms object-oriented programming and
personal computing, and helped pull together the ideas of the modern PC while
at Xerox PARC.2

But OOA/D was informal through that period, and it wasn’t until 1982 that
OOD emerged as a topic in its own right. This milestone came when Grady
Booch (also a UML founder) wrote the first paper titled Object-Oriented Design,
probably coining the term [Booch82]. Many other well-known OOA/D pioneers
developed their ideas during the 1980s: Kent Beck, Peter Coad, Don Firesmith,
Ivar Jacobson (a UML founder), Steve Mellor, Bertrand Meyer, Jim Rumbaugh
(a UML founder), and Rebecca Wirfs-Brock, among others. Meyer published one
of the early influential books, Object-Oriented Software Construction, in 1988.
And Mellor and Schlaer published Object-Oriented Systems Analysis, coining
the term object-oriented analysis, in the same year. Peter Coad created a com-
plete OOA/D method in the late 1980s and published, in 1990 and 1991, the
twin volumes Object-Oriented Analysis and Object-Oriented Design. Also in
1990, Wirfs-Brock and others described the responsibility-driven design
approach to OOD in their popular Designing Object-Oriented Software. In 1991
two very popular OOA/D books were published. One described the OMT method,
Object-Oriented Modeling and Design, by Rumbaugh et al. The other described
the Booch method, Object-Oriented Design with Applications. In 1992, Jacobson
published the popular Object-Oriented Software Engineering, which promoted
not only OOA/D, but use cases for requirements.

The UML started as an effort by Booch and Rumbaugh in 1994 not only to cre-
ate a common notation, but to combine their two methods—the Booch and OMT
methods. Thus, the first public draft of what today is the UML was presented as
the Unified Method. They were soon joined at Rational Corporation by Ivar
Jacobson, the creator of the Objectory method, and as a group came to be known
as the three amigos. It was at this point that they decided to reduce the scope of
their effort, and focus on a common diagramming notation—the UML—rather
than a common method. This was not only a de-scoping effort; the Object Man-
agement Group (OMG, an industry standards body for OO-related standards)

2. Kay started work on OO and the PC in the 1960s, while a graduate student. In Decem-
ber 1979—at the prompting of Apple’s great Jef Raskin (the lead creator of the Mac)—
Steve Jobs, co-founder and CEO of Apple, visited Alan Kay and research teams 
(including Dan Ingalls, the implementor of Kay’s vision) at Xerox PARC for a demo of 
the Smalltalk personal computer. Stunned by what he saw—a graphical UI of bit-
mapped overlapping windows, OO programming, and networked PCs—he returned to 
Apple with a new vision (the one Raskin hoped for), and the Apple Lisa and Macintosh 
were born.



1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

16

was convinced by various tool vendors that an open standard was needed. Thus,
the process opened up, and an OMG task force chaired by Mary Loomis and Jim
Odell organized the initial effort leading to UML 1.0 in 1997. Many others con-
tributed to the UML, perhaps most notably Cris Kobryn, a leader in its ongoing
refinement. 

The UML has emerged as the de facto and de jure standard diagramming nota-
tion for object-oriented modeling, and has continued to be refined in new OMG
UML versions, available at www.omg.org or www.uml.org.

1.9 Recommended Resources

Various OOA/D texts are recommended in later chapters, in relation to specific
subjects, such as OO design. The books in the history section are all worth
study—and still applicable regarding their core advice.

A very readable and popular summary of essential UML notation is UML Dis-
tilled by Martin Fowler. Highly recommended; Fowler has written many useful
books, with a practical and “agile” attitude.

For a detailed discussion of UML notation, The Unified Modeling Language Ref-
erence Manual by Rumbaugh is worthwhile. Note that this text isn’t meant for
learning how to do object modeling or OOA/D—it’s a UML notation reference.

For the definitive description of the current version of the UML, see the on-line
UML Infrastructure Specification and UML Superstructure Specification at
www.uml.org or www.omg.org. 

Visual UML modeling in an agile modeling spirit is described in Agile Modeling
by Scott Ambler. See also www.agilemodeling.com.

There is a large collection of links to OOA/D methods at www.cetus-links.org
and www.iturls.com (the large English “Software Engineering” subsection,
rather than the Chinese section).

There are many books on software patterns, but the seminal classic is Design
Patterns by Gamma, Helm, Johnson, and Vlissides. It is truly required reading
for those studying object design. However, it is not an introductory text and is
best read after one is comfortable with the fundamentals of object design and
programming. See also www.hillside.net and www.iturls.com (the English “Soft-
ware Engineering” subsection) for links to many pattern sites.


